

Dopamine & reinforcement learning

outline

- learning behavior
- basal ganglia & dopamine
- responses & interpretation

repeated trial-and-error decision makling

strategy:

- 1. Predict the outcomes
- 2. Choose the best
- 3. Learn from experience to improve predictions

Classical conditioning

- Pair stimulus (bell, light)
- ...with
 significant
 event (food,
 shock)
- Measure anticipatory behavior (salivation, freezing)

Rescorla-Wagner (72) model

"error-driven" learning:

minimize discrepancy between received reward r and predicted reward V

Predict: $V_t = \Sigma_i w_{i,t}$ for each presented stimulus i

Learn: $w_{i,t+1} = w_{i,t} + \varepsilon \delta_t$; $\delta_t = (r_t - V_t)$; for each presented stimulus I

predicts phenomena like "blocking" – no learning without prediction error

the R-W rule estimates the expected reward using an exponentially weighted average of recently received rewards:

$$\begin{aligned} & w_{i,t+1} = w_{i,t} + \varepsilon \delta_t; \ \delta_t = (r_t - V_t) \\ & w_{i,t+1} = \varepsilon r_t + (1-\varepsilon) \ w_{i,t} \end{aligned}$$

the influence of past rewards on animals' choice behavior

also shows this form:

(lau & glimcher 2005)

Basal ganglia

- Several large subcortical nuclei
 - unfortunate latin names follow proximity rather than function (eg caudate + putamen + nucleus accumbens are all pieces of striatum; but globus pallidus & substantia nigra each comprise two different things)

Basal ganglia input

Projection from entire cortex (including sensory, motor, associative areas) to striatum

Topographic

Voorn et al 2004

Basal ganglia functions

- Motor control plus
 - Range of motor disorders
 - But also drug abuse, reward, motivation
- Particular ideas (many overlapping)
 - Action selection or facilitation and suppression
 - Behavioral switching
 - Behavioral monitoring / regulation
 - Sequential movements
 - Internally generated movements (or stimulus-cued habits!)
 - "Limbic/motor gateway"
 - Reinforcement learning

Dopamine

(Kandel and Schwartz)

Typical dopamine responses

 Burst to unexpected reward

 Response transfers to reward predictors

 Pause at time of omitted reward

(Schultz et al. 1997)

More dopamine responses

no reward following

100% predictive cue

(Fiorillo et al 2003)

More dopamine responses

(Fiorillo et al 2003)

Prediction error

express dopamine response to reward as weighted sum of current & past rewards \rightarrow looks like current r minus weighted average of past rs (r - V)

dopamine response to reward as function of prediction error r - V \rightarrow quite linear; negative error cut off due to low baseline response

(Bayer & Glimcher 2004)

Prediction error in humans

BOLD response to reward in striatum (chief DA target) is modulated by prediction

Berns et al 2001

juice unexpected - expected

FMRI

BOLD signal in striatum correlates parametrically, trial-by-trial with prediction error

(O'Doherty et al 2003)

+ this signal modulated up & down by dopaminergic drugs (Pessiglione et al 2006)

FMRI

(O'Doherty et al 2003)

prediction error

- what should prediction error do?
 - drive learning
 - ...about expected rewards
 - ...to guide decision-making
- → this fits well with the multifarious roles of dopamine & its targets

Dopamine and plasticity

- If dopamine carries a prediction error, where does learning happen?
- Potentially, the cortico-striatal synapse

DA and corticostriatal plasticity

Three-factor learning rule? (pre/post/dopamine)

$$w_{i,t+1} = w_{i,t} + \varepsilon \delta_t$$

More dopamine responses

(Fiorillo et al 2003)

temporal-difference learning

Rescorla-Wagner:

Want
$$V_n = r_n$$
 \leftarrow (here n indexes trials, treated as units)
Use prediction error $\delta_n = r_n - V_n$

Temporal-difference learning (Sutton & Barto):

Want
$$V_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + ... \leftarrow$$
 (here t indexes time within trial)
= $r_t + V_{t+1}$ \leftarrow (clever recursive trick)

Use prediction error $\delta_t = [r_t + V_{t+1}] - V_t$

temporal difference learning

Temporal-difference learning (Sutton & Barto):

Want
$$V_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \dots$$

= $r_t + V_{t+1}$

Use prediction error $\delta_t = [r_t + V_{t+1}] - V_t$

- learn to predict cumulative future rewards r_t + r_{t+1} +...
- learn using what I predict at time t+1 (V_{t+1}) as stand in for all future rewards
 - so I don't have to wait forever to learn
- learn consistent predictions based on temporal difference $V_{t+1} V_t$
 - if $V_{t+1} = V_t$, my predictions are consistent
 - if $V_{t+1} > V_t$, things got unexpectedly better
 - if $V_{t+1} < V_t$, things got unexpectedly worse
 - → and these act like reward to generate prediction error and learning

(example on board)

Second order conditioning

Phase 1: Phase 2: Test:

Second order: $A \rightarrow R$ $B \rightarrow A$ A? resp

B? resp

- B associated with reward even though never directly paired
- Rescorla/Wagner say B should be nothing, or negative (r_t always zero when B arrives)
- Temporal-difference learning explains this, if B precedes A
 - Positive prediction error when A appears
 - ie V_{t+1} - V_t positive, trains W_B
 - on board

Typical dopamine responses

Typical dopamine responses

(Schultz et al. 1997)

More dopamine responses

Dopamine responses interpreted

Dopamine responses interpreted

striatum & value

 striatal neurons do show ramping activity preceding reward, which changes with learning

Summary

- dopamine neurons report error in reward prediction
 - seen also in human BOLD
 - drives plasticity at striatal synapses
 - would be useful for learned decision-making
- full response explained by temporal-difference learning
 - Generalization of Rescorla-Wagner
 - learns to predict cumulative future reward
 - changes in future reward expectancy drive learning
 - this explains anticipatory dopaminergic responding, second order conditioning
- big implications for decision-making: sequential decision problems involving many future rewards